APPENDIX

A. Task Details
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Fig. 8: Simulation environments. Simulation environment for our bimanual
manipulation tasks, adapted from PerAct2. Each simulation image is shown
above its corresponding language goal. Text overlays within images indicate
the language goal of the task. Abbreviations in parentheses correspond to task
names used throughout the paper.
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Fig. 9: Real-world environments. Real-world environment for our bimanual
manipulation tasks. Each simulation image is shown above.

We show the simulation environment in Figure 8 and the
real-world environment in Figure 9. For real-world experi-
ments, we use an Intel RealSense D415 camera to capture
RGB and RGB-D images at a resolution of 640 x 480 pixels.
These images are first zero-padded and then rescaled to
128 x 128. We use the python-urx library to control the robot
arms and I/O programming to operate the Robotiq 2F-85

grippers.

B. Hyperparameters

Table VI summarizes the ACT hyperparameters. We use the
default PerAct2 chunk size of 10 for all simulation tasks and
a chunk size of 2 for all real-world tasks. In both simulation
and real-world, the RGB and RGB-D images are 128 x 128.
An NVIDIA 4090 GPU is used to train the ACT policy.

Hyperparameter Value
Learning Rate le-5
Batch Size 16
# Encoder Layers 4
# Decoder Layers 7
Feedforward Dimension 3200
Hidden Dimension 512
# Heads 8
Beta 100
Dropout 0.1

TABLE VI: Hyperparameters of ACT.

Hyperparameter Value

Base Model Stable Diffusion 2.1
Learning Rate le-5
Weight Decay le-2
Epochs 150

Batch Size 24

Image Size 512x 512

TABLE VII: Hyperparameters of ControlNet.

Table VII summarizes the ControlNet hyperparameters.
ControlNet was trained on a single NVIDIA A100 GPU with
80GB of VRAM. Image synthesis was done on a single
NVIDIA P100 GPU.

C. Examples of Synthesized Images

Figure 10 shows the simulation synthesized image results
for Coordinated Put Item In Drawer (CPID),
Bimanual Straighten Rope (BSR), Coordinated
Lift Tray (CLT), and the Coordinated Push Box
(CPB) tasks. Figure 11 shows the real-world synthesized
image results for Push Box and Lift Ball tasks.

D. Additional Baseline Implementation Details

For the fine-tuned VISTA approach, we randomly sample
10 overhead camera viewpoints from a quarter-circle arc
distribution to train ZeroNVS using VISTA’s default fine-
tuning hyperparameters. The ZeroNVS model is fine-tuned for
5,000 iterations on four NVIDIA A40 GPUs. The resulting
fine-tuned model is used to synthesize overhead camera views
for all timesteps across each demonstration episode. These
synthetically generated overhead images serve as replacements
for the original overhead camera data and are utilized to train
the ACT policy.

E. Camera Perturbation Sampling

For contact-based states, we utilize the constraint opti-
mization framework from D-CODA [15] to ensure consistent
perturbations across both robotic arms. The approach leverages
Dual Annealing [64], a global optimization method that han-
dles constrained problems with early termination capabilities.
The optimization variable consists of translation coordinates
Cuans, Which define the transformation applied to camera
perturbations (normalized within [—1,1]).

The objective function incorporates penalties for several
undesirable conditions: perturbations that are too small, end-
effector configurations positioned too near the table surface,


https://github.com/SintefManufacturing/python-urx

and end-effector poses too close with the other. To validate
the kinematic feasibility of perturbed end-effector positions,
we integrate a Levenberg-Marquardt (LM) inverse kinematics
solver. Configurations that fail to produce valid joint solutions
receive appropriate penalty weights in the optimization pro-
cess. We define the overall optimization problem as:

minimize Cost(Ctrans)

Ctrans
subject 10 Cyans € [—1,1]%, Cirans > mp,
Proximity ToTable(Cirans) > drables 3
Proximity ToOtherEEF (cirans) > deft,
IKSolver(cirans) = valid.

We configure the perturbation parameters as follows: trans-
lation magnitudes are bounded by [my, my] = [0.05,0.1] me-
ters for both contactless and contact-rich scenarios. Rotational
perturbations for contactless states are constrained within
[11b, Fub] = [—28.7°,28.7°]. The replacement interval parameter
k, which determines the frequency at which original states are
replaced with the synthesized states is set to k = 8 across all
simulated and real-world experimental tasks.

F. Multi-Conditioning for ControlNet

To generate depth images consistent with both the RGB
image and target pose image (Figure 4), we modified Control-
Net to support multi-conditioning modalities. While the native
ControlNet code only supports a single conditioning modality,
recent works [65]-[69] have explored incorporating multiple
conditioning inputs. However, at the time of publication, these
approaches either lack publicly available code, have not been
evaluated on skeleton pose conditioning (focusing instead
on other modalities such as segmentation masks), or require
significantly greater computational resources than the standard
ControlNet implementation. Usually, these works require 8
GPU’s with each at least 48 GB to train. We anticipate that
future work can leverage these novel multi-modal conditioning
works to further reduce image artifacts and improve generation
quality.

G. Saftey Considerations

Internet pre-trained diffusion models such as Stable Diffu-
sion [54] exhibit harmful biases [70] which could inadvertently
influence robot behavior when fine-tuned for manipulation
tasks. Robotic systems trained on synthetic data generated
by these models should have extensive and thorough safety
evaluations before deployment. To mitigate these risks, we
recommend implementing safety guidance mechanisms during
inference. These include classifiers to detect inappropriate
generations and human oversight of synthesized training data.
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Fig. 10: Synthesized images in simulation. We present synthesized images from the Coordinated Put Item In Drawer (CPID), Bimanual
Straighten Rope (BSR), Coordinated Lift Tray (CLT), and the Coordinated Push Box (CPB) task across two timesteps. The blue
bordered images show the original RGB and RGB-D images, while the red bordered images represent the generated target RGB and RGB-D images conditioned
on the corresponding skeleton pose shown below.
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Fig. 11: Synthesized images in the real-world. We present synthesized images from the Push Box and Lift Ball task across two timesteps. The
blue bordered images show the original RGB and RGB-D images, while the red bordered images represent the generated target RGB and RGB-D images
conditioned on the corresponding skeleton pose shown below.
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